SmartMarker⁶

possible

Röchling

Technisches Datenblatt

Sustarin® C natur

POM-C

Typische Eigenschaften

- Chemikalienbeständig
- Geringe
 - Feuchtigkeitsaufnahme
- Hohe Abriebfestigkeit
- Hohe Biegewechselfestigkeit
- Hohe Steifigkeit
- Gute Schlagzähigkeit
- Geringe Kriechneigung
- Gute Zerspanbarkeit
- Gute elektrische Eigenschaften
- Gute dielektrische Eigenschaften
- Gute Formbeständigkeit
- Gute Gleiteigenschaften

Typische Industrien

- Fahrzeugbau
- Elektronik
- Fördertechnik & Automation
- Maschinen- und Anlagenbau
- Öl und Gas

	Testverfahren	Einheit	Wert
Allgemeine Eigenschaften			
Dichte	DIN EN ISO 1183-1	g/cm ³	1,41
Feuchtigkeitsaufnahme	DIN EN ISO 62	%	0,2
Brennverhalten (Dicke 3 mm / 6 mm)	UL 94		HB / HB
Mechanische Eigenschaften			
Streckspannung	DIN EN ISO 527	MPa	67
Reißdehnung	DIN EN ISO 527	%	30
E-Modul	DIN EN ISO 527	MPa	2800
Kerbschlagzähigkeit	DIN EN ISO 179	kJ/m ²	6
Shore Härte	DIN EN ISO 868	scale D	81
Thermische Eigenschaften			
Schmelztemperatur	ISO 11357-3	°C	165
Wärmeleitfähigkeit	DIN 52612-1	W / (m * K)	0,31

ri-inquiry@roechling.com • www.roechling.com/industrial/materials

	Testverfahren	Einheit	Wert
Wärmekapazität	DIN 52612	kJ / (kg * K)	1,50
Linearer Ausdehnungskoeffizient	DIN 53752	10 ⁻⁶ / K	110
Einsatztemperatur langfristig	Average	°C	-50 100
Einsatztemperatur kurzzeitig (max.)	Average	°C	140
Wärmeformbeständigkeit	DIN EN ISO 75, Verf. A, HDT	°C	110
Elektrische Eigenschaften			
Dielektrizitätszahl	IEC 60250	'	3,8
Dielektrischer Verlustfaktor (50 Hz)	IEC 60250		0,002
Durchgangswiderstand	DIN EN 62631-3-1	Ω * cm	10 ¹³
Oberflächenwiderstand	DIN EN 62631-3-2	Ω	1013
Vergleichszahl der Kriechwegbildung	IEC 60112		600
Durchschlagfestigkeit	IEC 60243	kV / mm	40

Die kurzzeitige maximale Einsatztemperatur gilt nur für Anwendungen mit sehr niedriger mechanischer Belastung über wenige Stunden. Die langfristige maximale Einsatztemperatur basiert auf der Wärmealterung der Kunststoffe durch Oxidation, die eine Abnahme der mechanischen Eigenschaften zur Folge hat. Angegeben sind die Temperaturen, die nach einer Zeit von mindestens 5.000 Stunden eine Abnahme der Zugfestigkeit (gemessen bei Raumtemperatur) um 50% im Vergleich zum Ausgangswert verursachen. Dieser Wert liefert keine Aussage zur mechanischen Festigkeit des Werkstoffes bei hohen Anwendungstemperaturen. Bei dickwandigen Teilen ist von der Oxidation bei hohen Temperaturen nur die Oberflächenschicht betroffen, die durch den Zusatz von Antioxidantien besser geschützt werden kann. Der Kernbereich der Teile bleibt in jedem Fall ungeschädigt. Die minimale Einsatztemperatur wird maßgeblich bestimmt von einer möglichen Schlag- oder Stoßbelastung im Einsatz. Die angegebenen Werte beziehen sich auf geringe Schlagbeanspruchung. Die elektrischen Kennwerte wurden an naturfarbenem, trockenem Material gemessen. Bei anderen Einfärbungen (insbesondere schwarz) oder feuchtem Material kann es zu deutlichen Veränderungen der elektrischen Kennwerte kommen. Bei den angegebenen Werten handelt es sich um Mittelwerte, die durch ständige statistische Prüfungen abgesichert sind. Sie entsprechen den Vorgaben der DIN EN 15860. Sie dienen lediglich als Information über unsere Produkte und sollen eine Hilfe zur Materialauswahl sein. Wir sichern damit nicht bestimmte Eigenschaften oder die Eignung für bestimmte Einsatzzwecke rechtlich verbindlich zu. Da die Eigenschaften auch von den Dimensionen der Halbzeuge und dem Kristallisationsgrad (z.B. Nukleierung durch Pigmente) abhängen, können die tatsächlichen Eigenschaftswerte eines bestimmten Produkts von den Angaben etwos abweichen.

ri-inquiry@roechling.com • www.roechling.com/industrial/materials

